Topological characterizations to three types of covering approximation operators
نویسندگان
چکیده
Covering-based rough set theory is a useful tool to deal with inexact, uncertain or vague knowledge in information systems. Topology, one of the most important subjects in mathematics, provides mathematical tools and interesting topics in studying information systems and rough sets. In this paper, we present the topological characterizations to three types of covering approximation operators. First, we study the properties of topology induced by the sixth type of covering lower approximation operator. Second, some topological characterizations to the covering lower approximation operator to be an interior operator are established. We find that the topologies induced by this operator and by the sixth type of covering lower approximation operator are the same. Third, we study the conditions which make the first type of covering upper approximation operator be a closure operator, and find that the topology induced by the operator is the same as the topology induced by the fifth type of covering upper approximation operator. Forth, the conditions of the second type of covering upper approximation operator to be a closure operator and the properties of topology induced by it are established. Finally, these three topologies space are compared. In a word, topology provides a useful method to study the covering-based rough sets.
منابع مشابه
Multigranulation single valued neutrosophic covering-based rough sets and their applications to multi-criteria group decision making
In this paper, three types of (philosophical, optimistic and pessimistic) multigranulation single valued neutrosophic (SVN) covering-based rough set models are presented, and these three models are applied to the problem of multi-criteria group decision making (MCGDM).Firstly, a type of SVN covering-based rough set model is proposed.Based on this rough set model, three types of mult...
متن کاملOn twelve types of covering-based rough sets
Covering approximation spaces are a generalization of equivalence-based rough set theories. In this paper, we will consider twelve types of covering based approximation operators by combining four types of covering lower approximation operators and three types of covering upper approximation operators. Then, we will study the properties of these new pairs and show they have most of the common p...
متن کاملRough approximation operators based on quantale-valued fuzzy generalized neighborhood systems
Let $L$ be an integral and commutative quantale. In this paper, by fuzzifying the notion of generalized neighborhood systems, the notion of $L$-fuzzy generalized neighborhoodsystem is introduced and then a pair of lower and upperapproximation operators based on it are defined and discussed. It is proved that these approximation operators include generalized neighborhood system...
متن کاملTopological structure of covering rough sets
In this study, we induce some topological structures in the covering rough set models, and construct their closure operators by using the covering upper approximation operators. Furthermore, we show that the minimum set of each of these topological structures is their base, and a partition on the universe of discourse. Finally, we discuss the relationships between some topologies generated by s...
متن کاملCharacteristic matrix of covering and its application to Boolean matrix decomposition
Covering-based rough sets provide an efficient theory to deal with covering data which widely exist in practical applications. Boolean matrix decomposition has been widely applied to data mining and machine learning. In this paper, three types of existing covering approximation operators are represented by boolean matrices, and then they are used to decompose into boolean matrices. First, we de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1210.0074 شماره
صفحات -
تاریخ انتشار 2012